IDENTIFICATION OF ARCHITECTURAL BARRIERS AND OTHER ENVIRONMENTAL HAZARDS TO PHYSICALLY DISABLED PEOPLE

BERKELEY CAMPUS, UNIVERSITY OF CALIFORNIA
IDENTIFICATION OF ARCHITECTURAL BARRIERS AND OTHER ENVIRONMENTAL HAZARDS TO PHYSICALLY DISABLED PEOPLE

BERKELEY CAMPUS
UNIVERSITY OF CALIFORNIA

Sponsored by:
Betty H. Neely, Chairperson, Coordinating Committee for the Removal of Architectural Barriers (CCRAB).
Ronald E. Moore, Office of Programming and Architectural Services.
Lawrence L. Schmelzer, Office of Environmental Health and Safety.

Project Director: Keith Wilson

Project Advisors:
Raymond Lifchez, Department of Architecture.
Richard B. Coleman, Office of Environmental Health and Safety

Building Evaluation Staff:
Deborah DiNardo
Larry Gardner
Gary Henninger
Mike Henry

Mary Ann Hiserman
Lennis Jones
Terri Martin

Stevenson Sparks
Barbara Winslow
Kevin Wong

Grounds Evaluation Staff:
Edward Buffalow
Michael Pachovas

Reports Prepared by:
Barbara Knecht
Keith Wilson
Raymond Lifchez

Office of Programming and Architectural Services
September, 1976
<table>
<thead>
<tr>
<th>Building Access</th>
<th>Halls</th>
<th>Restrooms</th>
<th>Elevators</th>
<th>Stairways</th>
<th>Auditoriums</th>
<th>Other Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Entrance Accessible</td>
<td>No entrance</td>
<td>Full Access</td>
<td>Full Access</td>
<td>Not Accessible</td>
<td>No Elevator</td>
<td>Protruding Handrails Above 34"</td>
</tr>
<tr>
<td>Not accessible</td>
<td>No hazards</td>
<td>Staircase</td>
<td>Not accessible</td>
<td>Not accessible</td>
<td>Elevator not accessible</td>
<td>No space on stage</td>
</tr>
<tr>
<td>No fixture</td>
<td>No controls above</td>
<td>Stairway not modified for blind</td>
<td>No able to grasp</td>
<td>No accessible</td>
<td>No wheelchair</td>
<td>No accessible</td>
</tr>
<tr>
<td>No signage</td>
<td>No fixture</td>
<td>Stairway not modified for blind</td>
<td>No able to grasp</td>
<td>No accessible</td>
<td>No wheelchair</td>
<td>No accessible</td>
</tr>
</tbody>
</table>

- ALUMNI HOUSE
- ART MUSEUM
- BARRONS
- BIOCHEMISTRY
- BURGE
- CALIFORNIA
- CAMPANILE
- CAMPBELL
- CHEM. BIO.
- CORY
- COWELL
- DAVIS
- DOE
- DONOR
- DURANT
- DWINELLE
- EARTH SCIENCES
- ESHEMAN
- ETCHEVERRY
- EVANS
- EXTENSION
- GIANNINI
- GIAUQUE
- GILMAN
- HARMON
- HAVILAND
- HEARTH
- HERTZ
- HESSE/ O'BRIEN
- HILDEBRAND
- HILGARD
- KROEBER
- LATIMER
- LAW COMPLEX
- LE CONTE
- LEWIS
- LIFE SCIENCE
- McLAUGHLIN
- MOFFITT
- MORGAN
- MORRISON
- MOSES
- MULFORD
- NAVAL ARCH
- NORTH GATE
- OPTOMETRY
- PSL
- SOUTH HALL
- SPROUL
- STANLEY
- STEPHENS
- STUDENT UNION
- TOLMAN
- WARREN
- WEIDMAN
- WHEELER
- WURSTER
- ZELLERBACH
- PLAYHOUSE
The objective of this study was to evaluate the Berkeley campus buildings, grounds and facilities so as to identify deficiencies and hazards associated with the free movement and comfort of physically disabled people. The completed work has been recorded so as to facilitate using it as a guide in developing a comprehensive program to correct deficiencies and to eliminate hazards.

The study evaluated campus buildings, grounds and perimeter access. For this purpose, the campus area was divided into buildings (access, internal circulation and facilities) and campus grounds and immediate environs (parking and surface mobility for wheelchairs).

Each building evaluated for compliance with the California State Physically Handicapped Law, the American Standard Specifications for "Making Buildings and Facilities Accessible to, and Usable by the Physically Handicapped," and other criteria selected by the campus Committee for the Removal of Architectural Barriers. The campus grounds and environs were evaluated in a similar manner, emphasis being placed on curbs, grades, parking lot hazards and other factors which interfere with unimpeached movement of the physically disabled person.

The study was sponsored by the University of California's Office of Programming and Architectural Services, Office of Environmental Health and Safety and the campus Committee for the Removal of Architectural Barriers. Advising and technical and clerical assistance were given by the Department of Architecture, the Office of Programming and Architectural Services and the Office of Environmental Health and Safety. The survey of the buildings and grounds was made by students associated with the Physically Disabled Student program and the Department of Architecture. The Department of Architecture offered a special studies course which instructed students in the survey techniques used.

This study is long overdue and is primarily remedial in scope. In the campaign to make the public environment accessible to the physically disabled person, the first issues to be faced are those of physically appropriate measures -- the reworking of conventional designs in dimensions and forms suitable to a wheelchair or to a sightless individual. But its tardiness is in no way an indictment of the University but rather an indicator of the reluctance of society at large to recognize its biases about the physically disabled.
In another sense, however, the study is avant-garde, for it shows ways to effect profound changes. The historical concept in architectural design that the "user" is always able-bodied accounts for the way the environment has been built until today. What is required is a new concept of environmental design that will not be inherently discriminatory. The modifications to meet the needs of the widest range of individuals will in itself contribute toward our understanding of the issues, for it will lay the ground work for a more fundamental set of changes that must take place if the public environment and the public's attitude are to become truly "barrier-free." The process of carrying out this study showed this to be the effect on those who were involved in doing so.

Once the University environment is accessible to all, attitudes toward the physically disabled by the able-bodied are more likely to change. The physically disabled will be enabled to take a more normal role as users, their presence will become commonplace and they may begin to feel themselves less conspicuous, less the intruder. And if the physically disabled are able to negotiate the public environment without undue assistance from others, a certain burden of discomfort will be lifted, it is believed, from both the disabled and able-bodied persons: there should be less feeling of "imposing" on others by the disabled and less "guilt" or confusion on the part of the able-bodied as to their role in assisting the less-able. Interactions may then take a more normal course.

The study entailed the detailed examination of sixty-six campus structures and of the entire grounds. In each case, the report includes general remarks followed by listing (by place and item) of existing violations of those standards employed (and potential violations for which no standards have been established). As either funds and/or materials become available for making modifications on the campus, the Office of Facilities Management can readily review areas in which modifications may be most expeditiously made. Every violation is keyed to the standard University floor plans and ground plans, thus facilitating analysis and implementation.

The study was carried out by six teams, each consisting of an able-bodied student and a physically disabled student. Working thus in tandem, these teams were in the best possible position not only to record deficiencies and hazards in dimensional terms but also to judge performance standards. For example, situations of poor or no access which would not normally come into the view of an able-bodied user were quickly identified by the physically disabled student.
Achieving the barrier-free environment is only partly a matter of physical access; it is more largely one of attitudes. This is why it is encouraging and important that the University community, which has traditionally been a wellspring of values and attitudes which eventually change society at large, should lead the way toward a functional environmental design for all. On the Berkeley campus our modified structures and open spaces will serve as models in the design of future structures and open spaces -- by their performance we will be able to plan accordingly for the future.

Throughout the study the Sponsors, Project Advisors and the Building and Grounds Evaluation Staff worked closely together under the direction of Keith Wilson. The uniqueness of the undertaking gave the group an unusual sense of purpose which contributed to the group's ability to carry the work out.

It is felt that in addition to the purposes it will serve on our own campus, a major achievement of the study is the model it will provide to others elsewhere for the evaluation of their own environments.

Raymond Lifchez
Department of Architecture
INTRODUCTION

Cowell Hospital is difficult for most physically disabled students to reach due to its location at the top of campus, preceded by steep paths and stairs. There is one entrance on the Ground Floor: as it is level, a wheelchair with assistance at the doors can enter this way. The only other alternative for a wheelchair is the Urgent Care entrance on the east side of the First Floor. That is a problem because of the steep path from Gayley Road that precedes it, and here too assistance is needed with the doors. The entrance on the east side of the north wing is preceded by a two inch step, and is not available for general use (it is kept locked). The main entrance on the west side is preceded by two long flights of steps, making it difficult for most disabled to reach.

There are four passenger elevators, two in the north wing and two in the center wing, that serve all floors. There are also three stairways that serve all floors, plus an additional one between the Ground and First Floors near the Ground Floor entrance.

There are so signs directing a person in a wheelchair to the rather obscure accessible entrances, nor are there provisions for emergency exits for them. There are no Braille signs marking routes, warnings, or elevator controls for the blind.

The fire alarms, extinguishers, telephones and drinking fountains are usually inaccessible to the physically disabled, particularly those in wheelchairs.